
INTEGRATION, the VLSI journal 82 (2022) 147–154

A
0

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

DP-Nets: Dynamic programming assisted quantization schemes for DNN
compression and acceleration✩

Dingcheng Yang a, Wenjian Yu a,∗, Xiangyun Ding a, Ao Zhou b, Xiaoyi Wang b,∗

a Dept. Computer Science & Tech., BNRist, Tsinghua University, Beijing, China
b Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China

A R T I C L E I N F O

Keywords:
Dynamic programming
Neural network compression
Robust model
Weight quantization

A B S T R A C T

In this work, we present effective quantization schemes called DP-Nets for the compression and acceleration
of deep neural networks (DNNs). A key ingredient is a novel dynamic programming (DP) based algorithm
to obtain the optimal solution of scalar K-means clustering. Based on the approaches with regularization
and quantization function, two weight quantization approaches called DPR and DPQ for compressing normal
DNNs are proposed respectively. Accordingly, a technique based on DP-Nets for inference acceleration is
presented. Experiments show that DP-Nets produce models with higher inference accuracy than recently
proposed counterparts while achieving same or larger compression. They are also extended for compressing
robust DNNs, and the relevant experiments show 16X compression of the robust ResNet-18 model with less
than 3% accuracy drop on both natural and adversarial examples. The experiments with FPGA demonstrate
that the technique for inference acceleration brings over 5X speedup on matrix–vector multiplication.
1. Introduction

Deep neural networks (DNNs) have been demonstrated to be suc-
cessful on many tasks. However, the size of DNN model has contin-
uously increased while it achieves better performance. As a result,
the storage space of DNN becomes a major concern if we deploy it
on resource-constrained devices, especially in the edge-computing and
AI-of-things applications.

In recent years, there are a lot of work on compressing DNN
models. The proposed techniques consist of pruning [1,2], knowledge
distillation [3], quantization [4–9] , low-rank approximation [10–13],
etc. Among them, quantization based methods represent the network
weights with very low precision, thus yielding highly compact DNN
models compared to their floating-point counterparts. Weight shar-
ing [4,5,7,8] is a kind of quantization method, which applies clustering
on the weights, so as to achieve compression by only recording cluster
centers and weight assignment indices. Other quantization methods can
be regarded as variants of scalar weight sharing, which restrict the
weights to floating-point numbers satisfying certain constraints [6,9].
The parameter space with them is a subspace of the parameter space for
the DNN applying the weight sharing with same bit length. Therefore,

✩ This work was supported by the National Key Research and Development Plan of China (2020AAA0103502), and Beijing National Research Center for
Information Science and Technology, China (BNR2019ZS01001).
∗ Corresponding authors.
E-mail addresses: ydc19@mails.tsinghua.edu.cn (D. Yang), yu-wj@tsinghua.edu.cn (W. Yu), ding-xy16@tsinghua.org.cn (X. Ding),

S201861539@emails.bjut.edu.cn (A. Zhou), wxy@bjut.edu.cn (X. Wang).

the weight sharing approach could provide better performance of com-
pression, while the other quantization schemes may be more friendly
to inference acceleration.

DNNs are vulnerable to adversarial examples, which can be crafted
by adding visually impercetible perturbations on images. Several ap-
proaches for training robust DNN models were recently proposed [14,
15], to defense the adversarial examples. However, there is few work
devoted to the compression of robust DNN model, and existing ones
only employ the pruning and/or simple quantization technique [16,17].

In various quantization approaches, the K-means clustering problem
is often involved. It is always solved with the Lloyd’s algorithm [18] in
existing work, resulting in a solution which is non-optimal, and sensi-
tive to the initial guess as revealed by experiments in [8]. In this work,
we consider the scalar K-means clustering without using the Lloyd’s
algorithm, and explore better weight quantization approaches for the
compression of normal and robust DNNs. One of our key contributions
is a dynamic programming (DP) based algorithm producing the optimal
solution of scalar clustering problem. It has 𝑂(𝑁2𝐾) time complexity,
where 𝑁 and 𝐾 are the numbers of scalars and clusters respectively.
The algorithm is collaborated with the weight quantization approaches
to become dynamic programming assisted quantization schemes (called
vailable online 2 November 2021
167-9260/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.vlsi.2021.10.002
Received 11 April 2021; Received in revised form 14 August 2021; Accepted 18 Oc
tober 2021

http://www.elsevier.com/locate/vlsi
http://www.elsevier.com/locate/vlsi
mailto:ydc19@mails.tsinghua.edu.cn
mailto:yu-wj@tsinghua.edu.cn
mailto:ding-xy16@tsinghua.org.cn
mailto:S201861539@emails.bjut.edu.cn
mailto:wxy@bjut.edu.cn
https://doi.org/10.1016/j.vlsi.2021.10.002
https://doi.org/10.1016/j.vlsi.2021.10.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2021.10.002&domain=pdf

Integration 82 (2022) 147–154D. Yang et al.
DP-Nets), which improve the compression of normal and robust DNN
models, and bring inference acceleration as well.

The major contributions of this work are as follows.

• A dynamic programming (DP) based algorithm is proposed to
obtain the optimal solution of the K-means clustering problem
with scalar data.

• Two DP assisted quantization schemes (called DP-Nets) are pro-
posed for DNN compression and acceleration. They are the DP
assisted approach with regularization (called DPR) and the DP
assisted approach with quantization function (called DPQ). DPR
trains a clustering-friendly network and then compresses it with
weight clustering. DPQ trains the network with a formulation
including quantization function and employs the DP based algo-
rithm to obtain better clustering.

• The DP-Nets are then extended to schemes called DPR+ and
DPQ+, through collaborating with the recently proposed TRADES
(TRadeoff-inspired Adversarial DEfense via Surrogate-loss mini-
mization) model [15], for compressing robust DNNs.

• A technique based on DP-Nets for inference acceleration is pre-
sented and validated with experiments on FPGA.

Experiments on normal DNNs have shown the advantages of DPR
and DPQ over other compression approaches like Deep K-Means [19]
and LQ-Net [9]. For GoogLeNet on ImageNet dataset, DPQ results in
a model which is 2.5X smaller and with 1% higher inference accu-
racy than that produced by Deep K-means. For ResNet-18, the models
obtained with DPQ show 0.5% higher accuracy than those by LQ-
Net with same compression ratio. Besides, up to 77X compression
of Wide ResNet is achieved (with < 3% accuracy drop) by a com-
binatorial scheme including DPR, the pruning and Huffman coding
techniques. Furthermore, experiments on robust DNNs have validated
the effectiveness of the proposed DPR+ and DPQ+ approaches. With
2-bit quantization, DPR+ produces a compressed robust ResNet-18
model which exhibits less than 3% accuracy drop on both natural and
adversarial examples.

To show the inference acceleration brought by the DP-Nets, we have
designed a custom accelerator with specific implementation of matrix–
vector multiplication with the compressed model. The experiments on
FPGA reveal that at least 5X speedup can be achieved for inference
computations.

2. Background

2.1. Weight sharing and quantization

The scalar weight sharing introduced by [8] is the first quantiza-
tion approach. Regard the weights of DNN as a set of vectors 𝑊 =
{

𝑊1,… ,𝑊𝑚
}

, where 𝑊𝑖 ∈ R𝑛𝑖 . Accordingly, the result of scalar weight
sharing can be expressed as 𝐶 = [𝐶1,… , 𝐶𝑚] ∈ R𝐾×𝑚, where 𝐾 is the
number of clusters and vector 𝐶𝑖 contains the 𝐾 cluster centers. The
uncompressed DNN needs 32∑𝑚

𝑖=1 𝑛𝑖 bits for storing the weights, as each
weight is expressed as a 32-bit floating-point number. With the weight
sharing, each element of 𝑊𝑖 is represented by an element in 𝐶𝑖 ∈ R𝐾 .
So, we just need log2 𝐾 ⋅

∑𝑚
𝑖=1 𝑛𝑖 bits to encode the index and 32𝑚𝐾 bits

to store the cluster centers. Fig. 1 provides an example of the storage
formats. This scalar clustering leads to the compression ratio:

𝑟 =
32

∑𝑚
𝑖=1 𝑛𝑖

log2 𝐾 ⋅
∑𝑚

𝑖=1 𝑛𝑖 + 32𝑚𝐾
, (1)

which approximates 32∕log2 𝐾.
A naive approach for weight sharing regards the problem as the K-

means clustering of the trained weights. However, the weights often
follow the Gaussian distribution, which is consistent with the phe-
nomenon observed by [5] that the weights of learned convolutional
filters are typically smooth. This is shown in Fig. 2(a) as an example,
and means the learned weights may be unsuitable for clustering or
148
Fig. 1. An example of storage formats. The top table represents the normal storage
format, we need 9 32-bit floating-point numbers. The bottom table represents the
quantized storage format. Since the value can only be 3.5 or 7.2, we just need 9
bits to indicate which value each number is, and then store 2 32-bit floating-point
numbers (3.5 and 7.2).

Fig. 2. The histograms of weights in the FreshNet model’s first convolution layer
obtained from (a) a normal training, and (b) a clustering-friendly training.

quantization. Thus, the network has to be retrained to compensate
for the accuracy loss caused by weight sharing [8]. Because for each
weight, the cluster it belongs to is fixed during the retraining, this is
the same as what is done for HashedNet [4], i.e randomly grouping
each weight and then training, and could not produce a good DNN
model [20].

Training DNN and performing weight sharing can be formulated as
a single optimization problem. If the loss function of training DNN is
𝐿(𝑊), the optimization problem can be expressed as:

min
𝑊 ,𝐶

𝐿(𝑊), (2)

s. t. 𝐶 = [𝐶1, 𝐶2,… , 𝐶𝑚] ∈ R𝐾×𝑚,

𝑊 =
{

𝑊1,𝑊2,… ,𝑊𝑚
}

, and ∀𝑖, 𝑗, 𝑊𝑖,𝑗 ∈ 𝐶𝑖 .

The constraint means every element in vector 𝑊𝑖 appears in the vector
𝐶𝑖 containing cluster centers. This formulation is also suitable for
a general quantization method. For a non-weight-sharing approach
(e.g. low-bit representation), a problem with more constraints added
to (2) is solved.

If the weights are regarded as vectors for clustering, it becomes
the vector weight sharing problem, which was investigated in [19].
Vector weight sharing produces larger compression ratio than (1) (even
> 32), but it may induce sacrifice on accuracy as compared with the
scalar weight sharing. A non-weight-sharing quantization approach can
be regarded as a variant of scalar weight sharing. It trades off smaller
parameter space for faster inference computation.

There are mainly two kinds of approaches for the quantization
problem. One coverts (2) to a formulation with regularization item.
The other takes the constraints into account with quantization function.
They are briefly introduced in the following two subsections.

2.2. The approach with regularization

The optimization problem (2) is difficult to solve. One can convert
the constraints to a regularization item in the loss function. Then,
solving the new formulation results in a clustering-friendly model.

For simplicity, we just consider the problem with 𝑚 = 1 where
the weight vector 𝑊 ′ ∈ R𝑛 is clustered to 𝐾 centers 𝑐1, 𝑐2,… , 𝑐𝐾 .
For (2), the constraints can be converted to a regularization item

Integration 82 (2022) 147–154D. Yang et al.

u
g
b

2

i
𝐶
c
p

∀

O
H

a
q
c

3

a
p
q
n

3

v
c
o
p

T
c

i
c
l

o
o

𝑧

𝑧
𝑛
r
e

p
F
s
g
p
s

p
D

𝜆
∑𝑛

𝑖=1 min1≤𝑘≤𝐾 (𝑊 ′
𝑖 − 𝑐𝑘)2 in the loss function, where 𝜆 is a Lagrange

multiplier. The regularization item corresponds to the loss of K-means
clustering problem, which is generally NP-hard for vector data. An
approximate algorithm for K-means clustering was proposed in [21],
which relaxed the problem to minimizing 𝑇 𝑟(𝑊 ′𝑇𝑊 ′)−𝑇 𝑟(𝐹 𝑇𝑊 ′𝑇𝑊 ′𝐹)
with constraint 𝐹 𝑇𝐹 = 𝐼 . Here, 𝑇 𝑟 denotes the matrix trace, 𝐹 ∈
R𝑛×𝐾 , and 𝐼 is the identity matrix. A singular value decomposition
(SVD) based algorithm was proposed in [21] to obtain the closed-form
solution of the relaxed problem. Based on this, an approach called Deep
K-means was proposed for the weight-sharing compression of DNN,
which solves [19]:

min
𝑊 ′ ,𝐹

{𝐿(𝑊 ′) + 𝜆[𝑇 𝑟(𝑊 ′𝑇𝑊 ′) − 𝑇 𝑟(𝐹 𝑇𝑊 ′𝑇𝑊 ′𝐹)]} (3)

s. t. 𝐹 ∈ R𝑛×𝐾 , 𝐹 𝑇𝐹 = 𝐼.

An iterative procedure was proposed in [19] to solve (3), which
pdates 𝑊 ′ and 𝐹 alternatively. 𝑊 ′ is updated with the stochastic
radient descent (SGD) approach at each iteration, while 𝐹 is updated
y computing 𝐾-truncated SVD after training every 𝑡 epochs.

.3. The approach with quantization function

The quantization function is also used to model the effect of cluster-
ng in (2). Suppose we have a quantization function 𝑄𝑖 for each 𝑊𝑖 and
𝑖, where 𝑄𝑖(𝑥) = argmin𝑐∈𝐶𝑖

|𝑥 − 𝑐|. Then, the quantization functions
an be plugged into the neural network directly. The optimization
roblem for quantization (2) is converted to:

min
𝑊 ,𝐶

𝐿(𝑄1(𝑊1), 𝑄2(𝑊2),… , 𝑄𝑚(𝑊𝑚)), (4)

s. t. 𝐶 = [𝐶1, 𝐶2,… , 𝐶𝑚] ∈ R𝐾×𝑚,

𝑖, 𝑗, 𝑄𝑖(𝑊𝑖,𝑗) = argmin𝑐∈𝐶𝑖
|𝑊𝑖,𝑗 − 𝑐| .

nce the cluster centers 𝐶 is given, 𝑊 can be optimized by SGD.
owever, the 𝜕𝑄𝑖(𝑊𝑖,𝑗)

𝜕𝑊𝑖,𝑗
is zero almost everywhere, which makes 𝜕𝐿

𝜕𝑊𝑖,𝑗
= 0

and training neural network is infeasible. A common solution to this
is a so-called straight-through estimator (STE) technique [6], which
approximates 𝜕𝐿

𝜕𝑊𝑖,𝑗
with 𝜕𝐿

𝜕𝑄𝑖(𝑊𝑖,𝑗)
.

The remaining problem is how to choose 𝐶. Let 𝐿 be the bit length
for quantization, i.e. 𝐾 = 2𝐿. With LQ-Net [9], which is an effective
DNN quantization scheme with quantization function, a quantizer basis
𝑣𝑖 ∈ R𝐿 and an encoding matrix 𝐵𝑖 ∈ {−1, 1}𝑛𝑖×𝐿 for each vector 𝑊𝑖
re found at each iteration to minimize ‖𝐵𝑖𝑣𝑖 − 𝑊𝑖‖

2
2. Then, for each

uantization function 𝑄𝑖 vector 𝐶𝑖 = 𝐵∗𝑣𝑖, where matrix 𝐵∗ ∈ R𝐾×𝐿

ontains all vectors from set {−1, 1}𝐿.

. DP-Nets for DNN compression and acceleration

In this section, we first propose the dynamic programming based
lgorithm for the scalar clustering problem. Then, we present its ap-
lications to improve the aforementioned two approaches for DNN
uantization. At last, a custom accelerator is proposed to speed up the
eural network compressed with the DP-Nets.

.1. A DP based algorithm for scalar clustering

As we know, the K-means clustering problem is NP-hard for general
ector data. Therefore, the global optimum for the vector quantization
annot be found in reasonable time. Nevertheless, we find out that the
ptimal solution of the scalar K-means clustering can be obtained in
olynomial time, based on the following Theorem 1.

heorem 1. Let 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑁 be 𝑁 scalars which need to be
149

lustered into 𝐾 classes. The clustering result is expressed as an integer index
Fig. 3. Illustration of the optimal solution of clustering 𝑁 scalars into 𝐾 classes.

set 𝑝 = {𝑝1, 𝑝2,… , 𝑝𝑁}, 1 ≤ 𝑝𝑖 ≤ 𝐾, which means 𝑥𝑖 belongs to the 𝑝𝑖th
cluster. If the K-means clustering is to minimize

𝑔(𝑝, 𝑐) =
𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑐𝑝𝑖)

2 , (5)

s.t. 𝑐 = {𝑐1, 𝑐2,… , 𝑐𝐾}, 𝑐1 < 𝑐2 < ⋯ < 𝑐𝐾 ,

an optimal solution 𝑝 satisfies: 1 = 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑁 = 𝐾.

Proof. Suppose the ascending array 𝑐 = {𝑐𝑖} stands for the cluster
centers for the optimal solution. Let 𝑐′0=−∞, 𝑐′1=(𝑐1+𝑐2)∕2, 𝑐′2=(𝑐2+𝑐3)∕2,
⋯, 𝑐′𝐾−1=(𝑐𝐾−1+𝑐𝐾)∕2, 𝑐′𝐾 =∞. We can construct a clustering solution
by setting 𝑝𝑖 = 𝑗, for any 𝑥𝑖 satisfying 𝑐′𝑗−1 ≤ 𝑥𝑖 < 𝑐′𝑗 (meaning 𝑐𝑗 is the
closest cluster center for 𝑥𝑖). Therefore, this solution minimizes 𝑔(𝑝, 𝑐)
and is an optimal solution satisfying 1 = 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑁 = 𝐾. □

Theorem 1 infers that by suitable interval partition we can get the
optimal K-means clustering of the weights (see Fig. 3). Let 𝑥1 ≤ ⋯ ≤ 𝑥𝑁
be the sorted weights for quantization, and 𝐺𝑛,𝑘 be the minimum loss
for clustering the first 𝑛 weights into 𝑘 clusters. Based on Theorem 1,
we have

𝐺𝑛,𝑘 = min
𝑘−1≤𝑖<𝑛

{𝐺𝑖,𝑘−1 + ℎ(𝑖 + 1, 𝑛)}, 1 < 𝑘 ≤ 𝐾, 𝑘 ≤ 𝑛 ≤ 𝑁, (6)

where ℎ(𝑙, 𝑞) = min𝑐
∑𝑞

𝑖=𝑙(𝑥𝑖−𝑐)
2, meaning the minimum clustering error

(loss) for clustering 𝑥𝑙 , 𝑥𝑙+1,… , 𝑥𝑞 to one class. For the trivial situation
with 𝑘 = 1, 𝐺𝑛,1 = ℎ(1, 𝑛). Now, we consider how to obtain the optimal
clustering corresponding to 𝐺𝑛,𝑘 for the situations with 𝑘 > 1. Following
(6), we need to enumerate all possible 𝑖 which represents the largest
ndex of scalar not belonging to the 𝑘th cluster. The minimum loss for
lustering (i.e. quantization error) includes two parts: the minimum
oss for clustering 𝑥1,… , 𝑥𝑖 into 𝑘 − 1 clusters, i.e. 𝐺𝑖,𝑘−1, and the

minimum quantization error that quantizing 𝑥𝑖+1,… , 𝑥𝑛 into a single
value, i.e. ℎ(𝑖 + 1, 𝑛). The latter part can be easily calculated, and the
mean of scalars should be the cluster center (quantized value). So,

ℎ(𝑙, 𝑞) =
𝑞
∑

𝑖=𝑙
(𝑥𝑖 −

1
𝑞 − 𝑙 + 1

𝑞
∑

𝑗=𝑙
𝑥𝑗)2 (7)

=
𝑞
∑

𝑖=𝑙
𝑥2𝑖 −

1
𝑞 − 𝑙 + 1

(
𝑞
∑

𝑖=𝑙
𝑥𝑖)2.

For clustering, we need to know the optimal solution {𝑐𝑖}, instead
f the clustering error. We can use an auxiliary array 𝑧 to depict the
ptimal clustering obtained by solving (6):

𝑛,𝑘 = argmin𝑘−1≤𝑖<𝑛{𝐺𝑖,𝑘−1 + ℎ(𝑖 + 1, 𝑛)} + 1. (8)

𝑛,𝑘 is the index of the first scalar in the last class, when the first
scalars in {𝑥𝑖} are clustered into 𝑘 classes optimally. During the

ecursive procedure of solving (6) we can get the 𝑧𝑛,𝑘 values. And, for
xample, with 𝑧𝑁,𝐾 the last cluster center 𝑐𝐾 can be obtained.

The core idea of dynamic programming is breaking a complicated
roblem down into simpler sub-problems in a recursive manner [22].
rom the above discussion, we see that (6) reflects the optimal sub-
tructure for solving the scalar K-means clustering problem, and (8)
uides us to find an optimal solution. Along with (7) and other dynamic
rogramming skills, we derive Algorithm 1 for optimally solving the
calar quantization problem.

Based on Theorem 1, the related derivation (6) through (8), and the
rinciple of dynamic programming, we can prove the optimality of the
P based algorithm for scalar quantization, i.e. Theorem 2.

Integration 82 (2022) 147–154D. Yang et al.

1
d

a
c
g
n
ℎ
w
l
I
o
l

3

w
o
w
u

w
c

A
b
(
𝑚
w
w
p
w
t
t
i
w
w
p

n
r
p

A
D

𝑋

w
𝑊
n
p
f

3

w
D
o
K

t
d
s
i
t
𝐶
f
i

n
m

A
n

3

F
s
S
t
a

a
l
p
p

a
s
i
(
t
𝐾
m
r

Algorithm 1 DP based scalar quantization
Input: 𝑁 scalars 𝑥1 ≤ 𝑥2 ⋯ ≤ 𝑥𝑁 , number of clusters 𝐾.
Output: The 𝐾 cluster centers in the optimal solution.
1: Define two 𝑁 ×𝐾 arrays 𝐺 and 𝑧.
2: for 𝑖 ← 1 to 𝑁 do
3: Pre-compute ℎ(𝑗, 𝑖) for 1 ≤ 𝑗 ≤ 𝑖 based on (7).
4: 𝐺𝑖,1 ← ℎ(1, 𝑖), 𝑧𝑖,1 ← 1.
5: Calculate 𝐺𝑖,𝑘 and 𝑧𝑖,𝑘 based on (6) and (8) for 1 < 𝑘 ≤ 𝐾.
6: end for
7: 𝑛 ← 𝑁
8: for 𝑖 ← 𝐾 downto 1 do
9: 𝑐𝑖 ← (

∑𝑛
𝑗=𝑧𝑛,𝑖

𝑥𝑗)∕(𝑛 − 𝑧𝑛,𝑖).
10: 𝑛 ← 𝑧𝑛,𝑖 − 1.
11: end for
12: return 𝑐1, 𝑐2,⋯ , 𝑐𝐾 .

Theorem 2. The DP based algorithm for scalar quantization (Algorithm
) obtains the optimal solution for the K-means clustering problem of scalar
ata.

For Step 3 of Algorithm 1, we just need enumerate 𝑗 from 𝑖 to 1,
nd use two variables to store ∑𝑖

𝑘=𝑗 𝑥
2
𝑘 and ∑𝑖

𝑘=𝑗 𝑥𝑘. Then, with (7) we
an obtain ℎ(𝑗, 𝑖) for all 𝑗 < 𝑖, with a time complexity of 𝑂(𝑖) for a
iven 𝑖. The time complexity of Step 5 is 𝑂(𝑖𝐾) for a given 𝑖, since (6)
eeds 𝑂(𝑖) time for calculating each 𝐺𝑖,𝑘 and 𝑧𝑖,𝑘 with the pre-computed
(𝑗, 𝑖). This derives that the time complexity of Algorithm 1 is 𝑂(𝑁2𝐾),
here 𝑁 is the numbers of scalars. We will make sure that 𝑁 is not very

arge to save computation, when applying it to the weight quantization.
t should be pointed out that, Algorithm 1 can be easily extended to
ther kinds of clustering problem, such as that if the 𝐿2 norm in the
oss function (5) is replaced with 𝐿1 norm.

.2. DP assisted approach with regularization

Inspired by Deep K-means [19], we propose a DP assisted approach
ith regularization (called DPR) for DNN compression, which directly
ptimizes the Lagrangian function of (2) during the training process
ith the help of the proposed DP based algorithm. The problem is an
nconstrained optimization:

min
𝑊 ,𝐶

{𝐿(𝑊) + 𝜆
𝑚
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
min

1≤𝑘≤𝐾
(𝑊𝑖,𝑗 − 𝐶𝑖,𝑘)2}, (9)

here 𝜆 is the Lagrange multiplier. After solving it, we can obtain a
lustering-friendly network (an example is shown in Fig. 2(b)).

The problem is solved through alternatively optimizing 𝑊 and 𝐶.
fter every 𝑡 epochs of SGD based optimization of 𝑊 , we optimize 𝐶
y solving a scalar K-means clustering with the DP based algorithm
Algorithm 1). In practice, for an fully-connected (FC) layer with 𝑛𝑓𝑐 ×
𝑓𝑐 weights, we divide them into 𝑛𝑓𝑐 parts (each contains 𝑛 = 𝑚𝑓𝑐
eights). We cluster the weights row by row. For a convolutional layer
ith 𝑛𝑐𝑜𝑛𝑣×𝑚𝑐𝑜𝑛𝑣×ℎ𝑐𝑜𝑛𝑣×𝑤𝑐𝑜𝑛𝑣 weights, we divide the weights into 𝑛𝑐𝑜𝑛𝑣
arts and each part contains 𝑛 = 𝑚𝑐𝑜𝑛𝑣 × ℎ𝑐𝑜𝑛𝑣 × 𝑤𝑐𝑜𝑛𝑣 weights. In this
ay, the number of weights on which we do clustering will be no more

han 10000 for most mainstream DNNs. So, the computational time for
he DP based algorithm is affordable. This fine-grained scalar clustering
mproves the accuracy if compared with clustering all weights as a
hole, and just induces negligible drop of compression ratio. Compared
ith Deep K-means [19], we do not relax the original optimization
roblem and thus may achieve better accuracy.

The DPR is also applicable to the robust DNN models. We just
eed to add the clustering error, i.e. the minimum loss 𝐺𝑁,𝐾 , as a
egularization term to the loss function optimized during the training
rocess. We consider the state-of-the-art TRADES (TRadeoff-inspired
150
dversarial DEfense via Surrogate-loss minimization) model for robust
NN [15]. The new formulation for training becomes:

min
𝑊 ,𝐶

{ 𝐿(𝑓 (𝑋;𝑊), 𝑌) +

max
′∈B(𝑋,𝜖)

𝛾𝐿(𝑓 (𝑋;𝑊), 𝑓 (𝑋′;𝑊)) +

𝜆
𝑚
∑

𝑖=1

𝑛𝑖
∑

𝑗=1
min

1≤𝑘≤𝐾
(𝑊𝑖,𝑗 − 𝐶𝑖,𝑘)2 } , (10)

here 𝑓 (𝑋;𝑊) is the output vector of learning model given parameters
, 𝐿 denotes the cross-entropy loss function, B(𝑥, 𝜖) represents a

eighborhood of 𝑥: {𝑥′ ∶ ‖𝑥′ − 𝑥‖2 ≤ 𝜖}, and 𝛾 is a regularization
arameter to trade off between accuracy and robustness. With this
ormulation, we can train a clustering-friendly robust model.

.3. DP assisted approach with quantization function

Based on the formulation (4), we propose a DP assisted approach
ith quantization function (called DPQ). The core idea is performing
P based algorithm to find an accurate quantizer, i.e. obtaining the
ptimal 𝐶𝑖 to minimize ‖𝑄𝑖(𝑊𝑖) − 𝑊𝑖‖

2
2. This is the standard scalar

-means clustering problem. Then, we solve (4) directly.
We do not consider the constraints for quantizer in LQ-Net [9], and

hus search in a larger parameter space. During the solution of (4), we
o not perform the proposed DP based algorithm at each iteration to
ave computation. Instead, it is executed every 𝑡 epochs while for other
teration we perform the Lloyd’s algorithm for clustering. Thanks to
he small perturbation of weights incurred by SGD, the cluster centers

in last iteration is a good initial guess of Lloyd’s algorithm. The
ine-grained scalar clustering strategy in last subsection is also used to
mprove the runtime efficiency.

This approach is also applicable to the robust DNN model. We just
eed to plug the quantization function into the loss function for robust
odel (such as TRADES) to derive the optimization problem:

min
𝑊 ,𝐶

{𝐿(𝑓 (𝑋;𝑄(𝑊)), 𝑌)

+ max
𝑋′∈B(𝑋,𝜖)

𝛾𝐿(𝑓 (𝑋;𝑄(𝑊)), 𝑓 (𝑋′;𝑄(𝑊)))}.
(11)

nd, the STE technique is used during the training, for either the
ormal model or robust model.

.4. Inference acceleration with DP-Nets

There are existing work on accelerating neural network on
PGA [23] and CPU [24]. In [23], the DNN model is compressed by
calar quantization so that it becomes small enough to be stored in
RAM, thus increasing the speed of memory access. In addition to
his benefit, specific technique can be developed for more inference
cceleration.

In the inference stage the major computation can be decomposed
s matrix–vector multiplications, for the FC layer or the convolutional
ayer. Each matrix–vector multiplication consists of many vector dot
roducts. For simplicity, we just consider accelerating the vector dot
roduct.

For two 𝑛-dimensional vectors 𝑎, 𝑏, normally we need to perform 𝑛
dditions and 𝑛 multiplications to make the dot product. With weight
haring, one vector, say 𝑏, is presented as [𝑐𝑝1 , 𝑐𝑝2 ,… , 𝑐𝑝𝑛]

𝑇 , where 𝑐
s a 𝐾-dimensional vector and 𝑝 is the 𝑛-dimensional index vector
1 ≤ 𝑝𝑖 ≤ 𝐾). Then, we have 𝑎𝑇 𝑏 =

∑𝐾
𝑘=1 𝑐𝑘(

∑

𝑖∈𝑆𝑘
𝑎𝑖), where 𝑆𝑖 is

he set of indices 𝑗 for which 𝑝𝑗 = 𝑖, and we only need to perform
multiplications by distributive property. Suppose an addition and a

ultiplication costs 𝑡𝑎 and 𝑡𝑚 time, respectively. This brings a speedup
atio of 𝑛(𝑡𝑎+𝑡𝑚)

𝑛𝑡𝑎+𝐾𝑡𝑚
. Notice 𝑛 is usually much larger than 1000, while 𝐾 is

no more than 16 in our experiments (i.e. 𝑛 ≫ 𝐾), and multiplication
is executed slower than addition (𝑡𝑚 > 𝑡𝑎). Thus, significant speedup
can be expected if the DNN model compressed with DP-Nets is used for
inference.

Integration 82 (2022) 147–154D. Yang et al.

t

F
s
A
C
a
t
v
f
t
T
m

Fig. 4. The design of matrix–vector multiplication accelerator on FPGA for verifying
he performance improvement brought by DP-Nets.

We design a simple matrix–vector multiplication accelerator with
PGA to verify the performance improvement brought by DP-Nets, as
hown in Fig. 4. The Processing Element (PE) is composed of a Data
ccess Manager, an Accumulator Set, a Multiply-Adder, and a Result
ache. The On-Chip Memory is a 32-bit wide RAM for storing matrix
nd vector data. The execution process of the PE is to accumulate
he vector elements corresponding to the elements with the same
alue in each row of the parameter matrix, and finally perform the
loating-point multiplication operation on these accumulation results
o complete the row vector multiplication column vector operation.
o make better use of the parallel computing power of matrix–vector
ultiplication, PE is composed of 𝐾 accumulators, and each accumu-

lator performs the accumulation operation in the calculation process of
different row vectors of the matrix. DP-Nets improve the computational
performance of the model by greatly reducing the multiplication opera-
tions in the vector dot product process. Therefore, after the accumulator
completes the accumulation operation of each row, only a small amount
of multiplication and addition operations are needed to obtain the final
matrix–vector multiplication result.

4. Experimental results

In this section, we present the experimental results to demonstrate
the effectiveness of the proposed DPR and DPQ approaches for DNN
compression. We first conduct experiments with CIFAR-10 dataset [25]
for compressing the normal DNN models in [5,11], and the Wide
ResNet [26]. The results show the benefit of using the proposed DP
based algorithm to replace the Lloyd’s algorithm, and the advantage
of the proposed approaches over the counterparts. Then, the exper-
iments are carried out with the ImageNet dataset, for compressing
GoogLeNet [27], ResNet-18 [28] and MobileNet-V2 [29]. Then, the
experiments on compressing robust DNN models are presented. Finally,
we show the result of the custom accelerator for DP-Nets on FPGA.

The proposed approaches are implemented with Python 3.6. The
DPR approach has two hyperparameters: 𝜆, the regularizer factor in
(9); 𝑡, the clustering frequency during training. We choose 𝜆 = 100
for all experiments. The value of 𝑡 varies for different datasets because
it affects the number of training epochs to reach convergence. The
DPQ approach has only one hyperparameter 𝑡, which is set to 5 for all
experiments. The training and inference are conducted on PyTorch. In
all experiments, the compression ratio (CR) of the proposed approaches
is obtained with (1) and then rounded to an integer [30].

4.1. Compressing normal models on CIFAR-10

The TT-Conv model [11] contains six convolutional layers and
one fully-connected (FC) layer. The authors of TT-Conv used tensor
151
Table 1
The results of compressing the models in [11] and [5]. 𝛥 means the change of inference
accuracy compared to the pretrained model. The inference accuracy of the pretrained
models we obtained for [11] and [5] are 91.45% and 87.51%, respectively.

TT-Conv model [11] FreshNet model [5]

Approach CR 𝛥(%) Approach CR 𝛥(%)

TT Decomposition [11] 4 −2.00 Hashed Net [4] 16 −9.79
Deep K-means [19] 2 +0.05 FreshNet [5] 16 −6.51
Deep K-means [19] 4 −0.04 Deep K-means [19] 16 −1.30

LR (3 bits) 10 −0.87 LR (2 bits) 16 −0.76
DPR (3 bits) 10 +0.31 DPR (2 bits) 16 −0.57
DPQ (3 bits) 10 +0.22 DPQ (2 bits) 16 −1.56

train decomposition to compress the convolutional layer by 4X which
makes the inference accuracy decreases by 2%. In [5], a FreshNet
approach is proposed to quantize the weights of a DNN model’s weights
on the frequency domain, based on the observation that the learned
convolutional weights are smooth and low-frequency. It achieves a CR
of 16, with a 6.51% drop of inference accuracy. In [19], Deep K-means
is used to compress the TT-Conv model and FreshNet model, which
achieves less accuracy loss with same compression ratio.

We first test the proposed DPR and DPQ with these two models. We
choose 𝑡 = 20 for DPR and use SGD with cosine annealing for training.
The learning rate reduces from 0.05 to 0.01 during the training. The
inference accuracy of the pretrained models we obtained for TT-Conv
and FreshNet model are 91.45% and 87.51%, respectively. They are
higher than those reported in [19]. For the TT-Conv model, we train
300 epochs. Because the FreshNet model is prone to overfitting [5],
we just train 150 epochs and obtain a better result than training
300 epochs. The number of training epochs used for our DP assisted
approaches is consistent with the pretrained model. We also use a
variant of DPR called LR as a baseline, which employs Lloyd’s algorithm
instead of DP to do clustering during training. The other details of LR
are consistent with DPR. The experimental results of DPR, DPQ, and
the baselines are listed in Table 1.

The results in Table 1 demonstrate two important phenomena.
Firstly, the inference accuracy of the model compressed by DPR is
always higher than that by LR, which means that the proposed DP
based algorithm is helpful to improve the accuracy of compressed
model. Secondly, the models compressed with our DPR performs the
best, and even can exhibit better accuracy than the pretrained uncom-
pressed model. The possible reason is that the constraint of quantization
may suppress overfitting, like what a 𝐿2-norm regularized factor often
behaves. Therefore, we believe that performing a suitable weight quan-
tization cannot only reduces the size of model, but also improve the
performance of DNN.

Compared with Deep K-means [19], the model compressed by DPR
exhibits much higher accuracy with same or larger CR. For the pro-
posed DPQ, it performs the same as DPR for the TT-Conv model, but
worse for the FreshNet model. This is possibly caused by the network
architecture of FreshNet and the small size of dataset. FreshNet has
very simple structure, which makes the overfitting easy to happen. We
will show the experiments with more popular networks (GoogLeNet,
ResNet-18, and MobileNet-V2) and the larger dataset (ImageNet) in the
following subsections.

Compared to DPQ, DPR has an additional hyperparameter 𝜆. We
conducted an experiment to study the sensitivity of DPR to it, with the
experimental results plotted in Fig. 5. From the figure we see that DPR
is not very sensitive to the 𝜆. The phenomenons mentioned previously
still exist. DPR always produces higher accuracy than LR under the
same configurations in all experiments. And, most DPR models with
3-bit representation performs better than their pretrained models. This
shows that a clustering-friendly network with appropriate number of
clusters may have better generalization than normal network, which
make our method meaningful even when compression is not needed.

Integration 82 (2022) 147–154D. Yang et al.

T
T
a
a

i
H
s
i
a
D
7

4

o
m
t
f
P
W
t
p
W
c
T
t
t
e
m
r

I
N
f
l

t
T
a
f
n
a
d
t
n
R
n

q
i
t
t
D
s
t
a
a
r
f
O
A
D
o

Fig. 5. The results of compressing TT-Conv with DPR. The accuracy change for varied
𝜆 with 𝑡 = 100.

able 2
he results of compressing GoogLeNet. 𝛥-top1 and 𝛥-top5 are the changes of top1-
ccuracy and top5-accuracy compared to the pretrained model, respectively. The top-1
ccuracy and top-5 accuracy of the pretrained model are 69.78% and 89.53%..
Approach CR 𝛥-top1 (%) 𝛥-top5 (%)

Deep K-means [19] 4 −1.95 −1.14
DPR (3 bits) 10 −1.56 −0.88
DPR (4 bits) 7 +0.30 +0.20
DPQ (3 bits) 10 +0.04 +0.05
DPQ (4 bits) 7 +1.85 +1.02

An additional experiment is carried out, following that was done
n [19]. We combine the proposed approach with the pruning and
uffman coding to compress the Wide ResNet [26] on CIFAR-10. The

parsity for each layer and the pruning method are the same as those
n [19], where a total CR=47 is achieved with 2.23% drop of inference
ccuracy and CR=50 is achieved with 4.49% drop of accuracy. We use
PR to replace Deep K-means for 2-bit quantization, resulting in CR of
7 with only 2.94% accuracy drop.

.2. Compressing normal models on ImageNet

The proposed approaches are first tested on GoogLeNet trained
n the ImageNet ILSVRC2012 dataset. We use the PyTorch official
odel as a pretrained model, whose top-1 accuracy is 69.78% and

op-5 accuracy is 89.53%. We quantize the all convolutional layer and
ully-connected layer. Our experiment settings are consistent with the
yTorch example1 of ImageNet except the number of training epochs.
e just train 30 epochs and make the learning rate decay 10X at

he 20th and 25th epoch respectively, because the pretrained model
rovides a good initial solution. The learning rate is initialized at 0.001.
e choose 𝑡 = 3 for DPR because three epochs are enough for SGD to

onverge when the cluster centers are fixed. The results are listed in
able 2. It shows that the proposed approaches result in better accuracy
han Deep K-means with 2.5X larger compression as well. Similar to
hose for TT-Conv, the models compressed by our DPR and DPQ even
xhibit better inference accuracy than the pretrained uncompressed
odel. While comparing DPR and DPQ, we see that the latter performs

emarkably better than the former.
Then, we conduct the experiment of compressing ResNet-18 with

mageNet dataset. The proposed approaches are compared with LQ-
et and other approaches, whose results are obtained from [9]. For

airness, we quantize all the convolutional layer and fully-connected
ayer except the first and last layers and do not employ a pretrained

1 https://github.com/pytorch/examples/tree/master/imagenet
152
Table 3
The results of compressing ResNet-18. acc-top1 and acc-top5 are the top1-accuracy and
top5-accuracy on ImageNet, respectively. The top-1 accuracy and top-5 accuracy of the
pretrained model are 70.01% and 89.18%, respectively.

Approach CR acc-top1 (%) acc-top5 (%)

TTQ (2 bits) [31] 16 66.6 87.2
ADMM (2 bits) [32] 16 67.0 87.5
LQ-Net (2 bits) [9] 16 68.0 88.0
LQ-Net (3 bits) [9] 10 69.3 88.8
LQ-Net (4 bits) [9] 7 70.0 89.1

DPR (2 bits) 16 63.0 84.5
DPR (3 bits) 10 69.2 88.6
DPR (4 bits) 7 70.3 89.5
DPQ (2 bits) 16 67.7 87.9
DPQ (3 bits) 10 69.8 89.3
DPQ (4 bits) 7 70.5 89.6

model, the same as in [9]. The results are listed in Table 3. From it
we see that DPQ surpasses the others when compressing ResNet-18 to
more than 2 bits. For 2-bit quantization of ResNet-18, the accuracy
of the model compressed with DPQ is comparable to that compressed
with LQ-Net. And for the quantization with 4 bits, the accuracy of
the model compressed with DPR is also better than that with LQ-Net.
This shows that the proposed approach, especially DPQ, has supe-
rior or comparable performance of compression to the recent LQ-Net
approach.

Finally, we also test the performance of proposed approach for com-
pressing MobileNet-V2. The top-1 accuracy of the pretrained model is
71.88%. By applying DPQ, the top-1 accuracy drop of a 4-bit MobileNet
is only 0.46%, while the model is compressed by about 6X.

4.3. Compressing robust models

The proposed DPR and DPQ are extended to compress the robust
DNN models. They are denoted by DPR+ and DPQ+ respectively, and
rain the compressed model through solving (10) and (11) based on the
RADES technique [15]. The training settings and evaluating settings
re consistent with the public codes2 of TRADES . We choose 𝑡 = 5
or DPR+ because their training epochs are small. We first test a small
etwork proposed by [33], which consists of four convolutional layers
nd three FC layers. We called it SmallCNN and train it on the MNIST
ataset. The pretained model achieves 99.54% accuracy on normal
esting data and 96.91% accuracy under a powerful attack algorithm
amed PGD (projected gradient descent) [34]. Then, we train a robust
esNet-18 model on CIFAR-10, which achieves 92.44% accuracy on
ormal testing data and 46.74% accuracy under the PGD attack.

Because there is few work on compressing a robust model with
uantization approach, we consider a baseline called DP0 for compar-
son. DP0 directly quantizes the weights of the pretrained model with
he proposed DP based algorithm to realize compression. Table 4 shows
he accuracy drop of different compressed robust models obtained with
P0, DPR+ and DPQ+. From the table, we see that DP0 employing the

imple weight-clustering quantization cannot preserve the accuracy of
he robust model. It results in the accuracy drop on natural example and
dversarial example up to 22.6%. With the proposed DPR+ and DPQ+

pproaches, the accuracy drop caused by the compressed model is
emarkably reduced (no more than 4.81%). This is due to the proposed
ormulations (10) and (11) for training the compressed robust model.
n the other hand, we find out that DPR+ performs better than DPQ+.
lthough they have comparable accuracy drop on the natural examples,
PR+ produces the model with 2% less accuracy drop than DPQ+

n the adversarial example. With 2-bit quantization, DPR+ obtains
a compressed robust ResNet-18 model which exhibits less than 3%
accuracy drop on both natural and adversarial examples.

2 https://github.com/yaodongyu/TRADES

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/yaodongyu/TRADES

Integration 82 (2022) 147–154D. Yang et al.

c
9
T
a

Table 4
The results of compressing the robust SmallCNN (on MNIST) and ResNet-18 (on CIFAR-
10). 𝛥𝑛𝑎𝑡 and 𝛥𝑎𝑑𝑣 are the accuracy changes for natural images and adversarial images
ompared to the pretrained model, respectively. The pretrained SmallCNN achieves
9.54% accuracy on natural images and 96.91% accuracy on adversarial images.
he pretrained ResNet-18 achieves 92.44% accuracy on natural images and 46.74%
ccuracy on adversarial images.
Approach CR Model 𝛥𝑛𝑎𝑡(%) 𝛥𝑎𝑑𝑣(%)

DP0 (2 bits) 14 SmallCNN −0.44 −5.90
DPR+ (2 bits) 14 SmallCNN −0.11 −2.38
DPQ+ (2 bits) 14 SmallCNN −0.37 −4.44
DP0 (2 bits) 16 ResNet-18 −22.48 −22.60
DPR+ (2 bits) 16 ResNet-18 −0.98 −2.77
DPQ+ (2 bits) 16 ResNet-18 +0.40 −4.81

Table 5
The time of a matrix–vector multiplication on FPGA.

Matrix source Matrix size Algorithm Time (ms) Speedup

FC layer 1000 × 1024 Baseline 61.5 –
Ours 11.9 5.1X

Conv layer 384 × 1728 Baseline 39.8 –
Ours 7.60 5.2X

4.4. Custom accelerator

To demonstrate the specific technique proposed in Section 3.4, we
test the runtime of DNN inference with the DP-Nets deployed on FPGA.

We choose the ZC706 evaluation board as the deployment platform,
which works at a clock frequency of 100 MHz. ZC706 contains a wealth
of computing and storage resources, including 218600 Look-Up Tables
(LUTs), 437200 Flip-Flops (FFs), 545 unit of 36k Block RAM (BRAM),
900 DSP48E units. Our accelerator is implemented in RTL language
and compiled and deployed with the help of Vivado tools. Because
our method greatly reduces the multiplication operations and greatly
compresses the matrix size, only about 10% of the DSP resources and
38% of the LUT resources are used.

The experiments involve an FC layer and a convolutional layer from
GoogleNet compressed by weight sharing with 4-bit representation, and
they are multiplied by random vectors. For the convolutional layer
with 𝑛𝑐𝑜𝑛𝑣 × 𝑚𝑐𝑜𝑛𝑣 × ℎ𝑐𝑜𝑛𝑣 × 𝑤𝑐𝑜𝑛𝑣 weights, we first reshape it to an
𝑛𝑐𝑜𝑛𝑣 ×𝑚𝑐𝑜𝑛𝑣ℎ𝑐𝑜𝑛𝑣𝑤𝑐𝑜𝑛𝑣 matrix. The baseline approach for matrix–vector
multiplication takes in the matrix represented by 32-bit floating-point
numbers stored in BRAM and/or distributed RAM, and the random vec-
tor stored in distributed RAM (ROM) to facilitate fast access. It adopts
a pipelined design technique, and performs floating-point multiply-add
operation by rows. The operation is implemented with the Floating-
point (7.1) IP Core provided by Xilinx, based on DSP Slice Full Usage.
For our approaches based on DP-Nets, the quantized matrix and com-
pressed matrix is small enough to be stored in the distributed RAM
synthesized by LUTs. And, the technique in Section 3.4 is implemented
to perform the matrix–vector multiplication. The experimental results
are listed in Table 5. It shows that the custom accelerator is at least
5X faster than the baseline approach without compression. In this
experiment, 4-bits representation means that 16 clusters are used for
preserving the accuracy of GoogleNet. For other DNN models, the
weights can be clustered into fewer classes, which in turn would lead
to larger compression ratio and more inference acceleration on FPGA.

5. Conclusions

A dynamical programming based algorithm for scalar clustering
and two DNN compression schemes, DPR and DPQ, are proposed.
DPR includes training a clustering-friendly network with a formulation
including the regularization item and the DP based algorithm obtaining
the optimal solution of scalar weight clustering. DPQ includes using the
153

DP based algorithm to find a better quantizer and training/compressing
the DNN with a formulation with quantization function. DPR and DPQ
are also extended to compress robust DNNs, through a combination
with the TRADES approach [15]. Lastly, a technique for inference
acceleration is proposed.

Exhaustive experiments have been carried out to show the ad-
vantages of the proposed approaches over existing counterparts for
compressing normal and robust DNNs. Experimental results also show,
the DPR approach performs better for robust models while the DPQ
approach is more suitable for large DNN models. The experiment on
FPGA shows that it brings 5X speedup to the computation associated
with FC layers and convolutional layers.

CRediT authorship contribution statement

Dingcheng Yang: Writing – Original Draft, Methodology, Software.
Wenjian Yu: Writing - review & editing, Supervision, Funding ac-
quisition, Resources. Xiangyun Ding: Software, Validation. Ao Zhou:
Software, Methodology, Writing - review & editing. Xiaoyi Wang:
Funding acquisition, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] S. Han, J. Pool, J. Tran, W. Dally, Learning both weights and connections for
efficient neural network, in: Proc. NIPS, 2015, pp. 1135–1143.

[2] Y. LeCun, J. Denker, S. Solla, Optimal brain damage, in: Proc. NIPS, 1990, pp.
598–605.

[3] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,
2015, arXiv preprint arXiv:1503.02531.

[4] W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing neural
networks with the hashing trick, in: Proc. ICML, 2015, pp. 2285–2294.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, Y. Chen, Compressing convolu-
tional neural networks in the frequency domain, in: Proc. SIGKDD, 2016, pp.
1475–1484.

[6] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized
neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1, 2016, arXiv preprint arXiv:1602.02830.

[7] Y. Gong, L. Liu, M. Yang, L. Bourdev, Compressing deep convolutional networks
using vector quantization, 2014, arXiv preprint arXiv:1412.6115.

[8] S. Han, H. Mao, W. Dally, Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding, 2015, arXiv preprint
arXiv:1510.00149.

[9] D. Zhang, J. Yang, D. Ye, G. Hua, LQ-Nets: Learned quantization for highly
accurate and compact deep neural networks, in: Proc. ECCV, 2018, pp. 365–382.

[10] R. Dai, L. Li, W. Yu, Fast training and model compression of gated RNNs via
singular value decomposition, in: Proc. IJCNN, 2018, pp. 1–7.

[11] T. Garipov, D. Podoprikhin, A. Novikov, D. Vetrov, Ultimate tensorization:
Compressing convolutional and FC layers alike, 2016, arXiv preprint arXiv:
1611.03214.

[12] Y. Ma, R. Chen, W. Li, F. Shang, W. Yu, M. Cho, B. Yu, A unified approximation
framework for compressing and accelerating deep neural networks, in: Proc.
ICTAI, 2019, pp. 376–383.

[13] W. Yu, Y. Gu, Y. Li, Efficient randomized algorithms for the fixed-precision
low-rank matrix approximation, SIAM J. Matrix Anal. Appl. 39 (3) (2018)
1339–1359.

[14] I. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples, 2014, arXiv preprint arXiv:1412.6572.

[15] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, M. Jordan, Theoretically
principled trade-off between robustness and accuracy, in: Proc. ICML, 2019, pp.
7472–7482.

[16] S. Gui, H. Wang, H. Yang, C. Yu, Z. Wang, J. Liu, Model compression with
adversarial robustness: A unified optimization framework, in: Proc. NIPS, 2019,
pp. 1285–1296.

[17] T. Hu, T. Chen, H. Wang, Z. Wang, Triple wins: Boosting accuracy, robustness
and efficiency together by enabling input-adaptive inference, in: Proc. ICLR,
2019.

[18] S. Lloyd, Least squares quantization in PCM, IEEE Trans. Inform. Theory 28 (2)

(1982) 129–137.

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1611.03214
http://arxiv.org/abs/1611.03214
http://arxiv.org/abs/1611.03214
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb13
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb13
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb13
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb13
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb13
http://arxiv.org/abs/1412.6572
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb18
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb18
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb18

Integration 82 (2022) 147–154D. Yang et al.
[19] J. Wu, Y. Wang, Z. Wu, Z. Wang, A. Veeraraghavan, Y. Lin, Deep 𝑘-Means: Re-
training and parameter sharing with harder cluster assignments for compressing
deep convolutions, in: Proc. ICML, 2018, pp. 5363–5372.

[20] Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, Rethinking the value of network
pruning, in: Proc. ICLR, 2019.

[21] H. Zha, X. He, C. Ding, M. Gu, H. Simon, Spectral relaxation for k-means
clustering, in: Proc. NIPS, 2002, pp. 1057–1064.

[22] S. Dreyfus, A. Law, Art and Theory of Dynamic Programming, Academic Press,
Inc., 1977.

[23] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE:
Efficient inference engine on compressed deep neural network, in: Proc. ISCA,
2016, pp. 243–254.

[24] M. Sotoudeh, S.S. Baghsorkhi, C3-Flow: Compute compression co-design flow for
deep neural networks, in: Proc. DAC, 2019, p. 86.

[25] A. Krizhevsky, G. Hinton, et al., Learning Multiple Layers of Features from Tiny
Images, Technical Report, Citeseer, 2009.

[26] S. Zagoruyko, N. Komodakis, Wide residual networks, in: Proc. BMVC, 2016.
154
[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proc. CVPR,
2015, pp. 1–9.

[28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proc. CVPR, 2016, pp. 770–778.

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: Inverted
residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4510–4520.

[30] D. Yang, W. Yu, H. Mu, G. Yao, Dynamic programming assisted quantization
approaches for compressing Normal and robust DNN models, in: Proceedings
of the 26th Asia and South Pacific Design Automation Conference, 2021, pp.
351–357.

[31] C. Zhu, S. Han, H. Mao, W. Dally, Trained ternary quantization, in: Proc. ICLR,
2017.

[32] C. Leng, Z. Dou, H. Li, S. Zhu, R. Jin, Extremely low bit neural network: Squeeze
the last bit out with ADMM, in: Proc. AAAI, 2018, pp. 3466–3473.

[33] N. Carlini, D. Wagner, Towards evaluating the robustness of neural networks,
in: Proc. IEEE Symposium on Security and Privacy, 2017, pp. 39–57.

[34] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning
models resistant to adversarial attacks, in: Proc. ICLR, 2018.

http://refhub.elsevier.com/S0167-9260(21)00114-0/sb22
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb22
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb22
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb25
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb25
http://refhub.elsevier.com/S0167-9260(21)00114-0/sb25

	DP-Nets: Dynamic programming assisted quantization schemes for DNN compression and acceleration
	Introduction
	Background
	Weight sharing and quantization
	The approach with regularization
	The approach with quantization function

	DP-Nets for DNN compression and acceleration
	A DP based algorithm for scalar clustering
	DP assisted approach with regularization
	DP assisted approach with quantization function
	Inference acceleration with DP-Nets

	Experimental results
	Compressing normal models on CIFAR-10
	Compressing normal models on ImageNet
	Compressing robust models
	Custom accelerator

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

